Spontaneous resolution of new conglomerates in the series of 4-arenesulfonyliminocyclohex-2-en-1-ones

Remir G. Kostyanovsky,**a Anatolii P. Avdeenko,* Svetlana A. Konovalova,* Gulnara K. Kadorkina* and Alexander V. Prosyanik*

^a N. N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, 117977 Moscow, Russian Federation. Fax: +7 095 137 3227; e-mail: kost@center.chph.ras.ru

b Donbass State Machinery Academy, 343913 Kramatorsk, Ukraine. Fax: +38 0626 416 676; e-mail: dgma@dgma.donetsk.ua

^c Ukrainian State Chemical Technology University, 320005 Dnepropetrovsk, Ukraine.

Fax: +38 0562 477 478; e-mail: ugxtu@dicht.dnepropetrovsk.ua

DOI: 10.1070/MC2000v010n01ABEH001208

Racemic mixtures 1a-f, 2a-e crystallise as conglomerates at room temperature and lead to spontaneous resolution; tosylimines 1e and 2c give homochiral crystals (space group P1), whereas similar benzenesulfonyloximes 3a,b give heterochiral packings (space groups $P2_1/n$ and $P2_1/c$, respectively).

Conglomerate formation is a necessary condition both for spontaneous resolution of enantiomers and for resolution by crystallization from optically active solvents or by an entrainment procedure. Conglomerate formation is of poor occurrence; up to 1979 only 250 conglomerates were reported, according to nowaday estimations the frequency of organic conglomerates does not exceed 10%, so that a search for conglomerates comprises an essential challenge. Some previous studies have shown that this proportion can fluctuate to a large extent in some particular series of organic compounds. Earlier we have found conglomerates among various classes of organic compounds using X-ray data, see out of the conglomerates are optically active solvents, so and engineering homochiral crystals.

In this work, another intriguing instance of conglomerate formation has been found in the rather wide series of derivatives of 4-arenesulfonyliminocyclohex-2-en-1-ones 1, 2. Compounds of this class have been synthesised recently by the halogenation of corresponding *N*-arenesulfonyl-*p*-quinone imines or 4-arene-

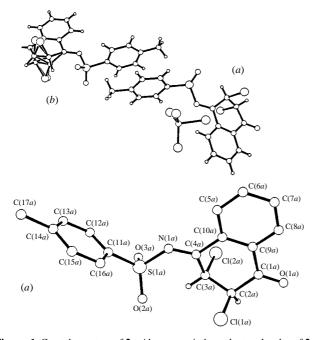


Figure 1 Crystal structure of 2c. Above: two independent molecules of 2c (a and b) and a molecule of the entrained CCl₄, in the molecule b a statistical disorder on two positions of the C(2b)C(3b) fragment is observed; below: the molecular structure of an independent molecule a of 2c. Selected bond lengths (Å): S(1a)–N(1a) 1.672(4), Cl(1a)–C(2a) 1.800(6), Cl(2a)–C(3a) 1.843(7), O(1a)–C(1a) 1.205(7), N(1a)–C(4a) 1.287(7), C(1a)–C(9a) 1.478(8), C(1a)–C(2a) 1.517(8), C(2a)–C(3a) 1.462(9), C(3a)–C(4a) 1.513(8), C(4a)–C(10a) 1.482(7), C(9a)–C(10a) 1.390(8); selected dihedral angles (°): S(1a)–N(1a)–C(4a)–C(10a) 179.9(4), S(1a)–N(1a)–C(4a)–C(3a) 3.0(8), C(3a)–C(4a)–C(10a)–C(9a) 17.7(7), C(2a)–C(3a)–C(4a)–C(10a) 45.2(7), Cl(1a)–C(2a)–C(3a)–Cl(2a) 177.9(3).

 Table 1 Conditions of crystallization and optical activity of the obtained compounds

Compound Solvent for the crystals growth Number of crystals with agent of crystals of each crystal o						
n-heptane (1:1) 3 9.1-29.1 -4.0-7.0 (0.8-2.4) 1b CHCl₃ 2 10.7-30.4 +2.4-5.6 (0.9-2.5) 1c CHCl₃- 1 26.6 +0.8 2.2) n-heptane 1 6.3 -3.8 (0.5) (3:2) 1 12.4 +4.8 (1.0) n-heptane 2 11.5-29.0 -2.9-3.1 (1.0-2.4) (1:1) 1 12.2 +2.1-7.8 (0.2-0.9) 1 12.2 +2.1 (0.9) ^b 3 7.5-63.4 -2.8-6.4 (0.5-5.3) 1f CHCl₃- 1 28.2 +12.3 (2.4) n-heptane 1 15.2 +2.4 (1.3) ^c (3:2) 1 56.1 -7.2 (4.7) 2a CHCl₃- 2 20.5-26.4 +2.3-2.7 (1.7-2.2) n-heptane 1 15.9 +8.7 (1.3) CCl₄ (1:1) 3 11.1-14.2 -7.2-9.6 (0.9-1.2) ^d 2c CCl₄ (1:1) 3 11.5-12.6 +1.9-2.1 (1.0) <t< td=""><td>Compound</td><td>the crystal</td><td>Number of</td><td>each crystal/</td><td colspan="2">of each crystal^a</td></t<>	Compound	the crystal	Number of	each crystal/	of each crystal ^a	
n-heptane (1:1) 3 9.1–29.1 -4.0–7.0 (0.8–2.4) 1b CHCl ₃ 2 10.7–30.4 +2.4–5.6 (0.9–2.5) 1c CHCl ₃ -1 26.6 +0.8 2.2) n-heptane 1 6.3 -3.8 (0.5) 3(3:2) 1 12.4 +4.8 (1.0) n-heptane 2 11.5–29.0 -2.9–3.1 (1.0–2.4) (1:1) 1 12.2 +2.1–7.8 (0.2–0.9) 1 12.2 +2.1 (0.9) ^b 3 7.5–63.4 -2.8–6.4 (0.5–5.3) 1f CHCl ₃ -1 28.2 +12.3 (2.4) n-heptane 1 15.2 +2.4 (1.3) ^c (3:2) 1 56.1 -7.2 (4.7) 2a CHCl ₃ -2 20.5–26.4 +2.3–2.7 (1.7–2.2) n-heptane 1 14.0 -2.6 (1.2) (1:2) 2 20.5–26.4 +2.3–2.7 (1.7–2.2) n-heptane 1 15.9 +8.7 (1.3) -2.2 (1.7–2.2) n-heptane 1 15.9 +8.7 (1.3) -2.2 (0.9–1.2) ^d 2c CC	1a	CHCl ₂ -	4	3.6-13.2	+2.7-9.3	(0.6-1.1)
(1:1) CHCl ₃ 2 10.7–30.4 +2.4–5.6 (0.9–2.5) 1 11.1 -3.2 (0.9) 1c CHCl ₃ - 1 26.6 +0.8 2.2) n-heptane 1 6.3 -3.8 (0.5) (3:2) 1d CHCl ₃ - 1 12.4 +4.8 (1.0) n-heptane 2 11.5–29.0 -2.9–3.1 (1.0–2.4) (1:1) 1e CHCl ₃ 3 2.7–12.2 +2.1–7.8 (0.2–0.9) 1 12.2 +2.1 (0.9) ^b 3 7.5–63.4 -2.8–6.4 (0.5–5.3) 1f CHCl ₃ - 1 28.2 +12.3 (2.4) n-heptane 1 15.2 +2.4 (1.3) ^c (3:2) 1 56.1 -7.2 (4.7) 2a CHCl ₃ - 2 20.5–26.4 +2.3–2.7 (1.7–2.2) n-heptane 1 14.0 -2.6 (1.2) (1:2) 2b CHCl ₃ - 1 15.9 +8.7 (1.3) CCl ₄ (1:1) 3 11.1–14.2 -7.2–9.6 (0.9–1.2) ^d 2c CCl ₄ 2 11.5–12.6 +1.9–2.1 (1.0) 2 1.3–2.5 +8.8–21.2 (0.1–0.2) ^c 1 29.0 +0.8 (2.4) ^e 2d CHCl ₃ - 1 12.6 +1.0 (1.1) n-heptane 1 12.6 +1.0 (1.1) n-heptane 1 12.6 +1.0 (1.1) n-heptane 1 15.5 -5.1 (1.0) (2:1) 2e CHCl ₃ - 2 3.3–13.1 +3.2–5.5 (0.3–1.1) n-heptane 1 7.5 -5.1 (1.0)						` ,
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						(010 _1.)
1c CHCl ₃ - 1 26.6 +0.8 2.2) n-heptane 1 6.3 -3.8 (0.5) (3:2) 1d CHCl ₃ - 1 12.4 +4.8 (1.0) n-heptane 2 11.5-29.0 -2.9-3.1 (1.0-2.4) (1:1) 1e CHCl ₃ 3 2.7-12.2 +2.1-7.8 (0.2-0.9) 1 12.2 +2.1 (0.9) 1 12.2 +2.1 (0.9) 1 12.2 +2.1 (0.9) 1 12.2 +2.1 (0.9) 1 12.2 +2.1 (0.9) 1 12.2 +2.1 (0.9) 1 12.2 +2.1 (0.9) 1 12.2 +2.1 (0.9) 2 +2.1 (1.3) 2 +2.4 (1.3) 2 (2.4) n-heptane 1 15.2 +2.4 (1.3) (3:2) 1 56.1 -7.2 (4.7) 2a CHCl ₃ - 2 20.5-26.4 +2.3-2.7 (1.7-2.2) n-heptane 1 14.0 -2.6 (1.2) (1:2) 2b CHCl ₃ - 1 15.9 +8.7 (1.3) CCl ₄ (1:1) 3 11.1-14.2 -7.2-9.6 (0.9-1.2) ^d 2c CCl ₄ 2 11.5-12.6 +1.9-2.1 (1.0) 2 1.3-2.5 +8.8-21.2 (0.1-0.2) ^c 1 29.0 +0.8 (2.4) ^e 2d CHCl ₃ - 1 12.6 +1.0 (1.1) n-heptane 1 11.5 -1.1 (1.0) (1:1) 2e CHCl ₃ - 2 3.3-13.1 +3.2-5.5 (0.3-1.1) n-heptane 1 7.5 -5.1 (1.0) (2c) 1 Me ₂ CO- the entire 45.2 -1.3 (3.8)	1b	. ,	2	10.7-30.4	+2.4-5.6	(0.9-2.5)
Ic $CHCl_3-$ 1 26.6 $+0.8$ 2.2) n -heptane 1 6.3 -3.8 (0.5) Id $CHCl_3-$ 1 12.4 $+4.8$ (1.0) n -heptane 2 11.5 - 29.0 -2.9 - 3.1 $(1.0$ - 2.4) (1:1) (1) (1) (1) (1) (1) 1e $CHCl_3$ 3 2.7 - 12.2 $+2.1$ - 7.8 $(0.2$ - $0.9)$ 1 12.2 $+2.1$ $(0.9)^b$ $(0.2$ - $0.9)$ 1 12.2 $+2.1$ $(0.9)^b$ 3 7.5 - 63.4 -2.8 - 6.4 $(0.5$ - $5.3)$ 1f $CHCl_3$ - 1 28.2 $+12.3$ (2.4) n -heptane 1 15.2 $+2.4$ $(1.3)^c$ $(3:2)$ 1 56.1 -7.2 (4.7) 2a $CHCl_3$ - 2 20.5 - 26.4 $+2.3$ - 2.7 $(1.7$ - $2.2)$ n -heptane 1 15.9 $+8.7$ (1.3) 2c CCl_4 2 11.5 - 12.6		3				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1c	CHCl ₂ -	1			
(3:2) CHCl ₃ - 1 12.4 +4.8 (1.0) n-heptane 2 11.5-29.0 -2.9-3.1 (1.0-2.4) (1:1) 1e CHCl ₃ 3 2.7-12.2 +2.1-7.8 (0.2-0.9) 1 12.2 +2.1 (0.9) ^b 3 7.5-63.4 -2.8-6.4 (0.5-5.3) 1f CHCl ₃ - 1 28.2 +12.3 (2.4) n-heptane 1 15.2 +2.4 (1.3) ^c (3:2) 1 56.1 -7.2 (4.7) 2a CHCl ₃ - 2 20.5-26.4 +2.3-2.7 (1.7-2.2) n-heptane 1 14.0 -2.6 (1.2) (1:2) 2b CHCl ₃ - 1 15.9 +8.7 (1.3) CCl ₄ (1:1) 3 11.1-14.2 -7.2-9.6 (0.9-1.2) ^d 2c CCl ₄ 2 11.5-12.6 +1.9-2.1 (1.0) 2 1.3-2.5 +8.8-21.2 (0.1-0.2) ^c 1 29.0 +0.8 (2.4) ^e 2d CHCl ₃ - 1 12.6 +1.0 (1.1) n-heptane 1 12.6 +1.0 (1.1) n-heptane 1 11.5 -1.1 (1.0) (1:1) 2e CHCl ₃ - 2 3.3-13.1 +3.2-5.5 (0.3-1.1) n-heptane 1 7.5 -5.1 (1.0) 2cf Me ₂ CO- the entire 45.2 -1.3 (3.8)	10					
1d $CHCl_3$ — n -heptane 2 1 12.4 n $+4.8$ (1.0) n -heptane 2 11.5 - 29.0 -2.9 - 3.1 $(1.0$ - $2.4)$ $(1:1)$ $(1:1)$ (1.0) 1e $CHCl_3$ 3 2.7 - 12.2 $+2.1$ - 7.8 $(0.2$ - $0.9)$ 1 12.2 $+2.1$ $(0.9)^b$ 3 7.5 - 63.4 -2.8 - 6.4 $(0.5$ - $5.3)$ 1f $CHCl_3$ - 1 28.2 $+12.3$ (2.4) n -heptane 1 15.2 $+2.4$ $(1.3)^c$ $(3:2)$ 1 56.1 -7.2 (4.7) 2a $CHCl_3$ - 2 20.5 - 26.4 $+2.3$ - 2.7 $(1.7$ - $2.2)$ n -heptane 1 14.0 -2.6 (1.2) $(1:2)$ $(1:2)$ 2b $CHCl_3$ - 1 15.9 $+8.7$ (1.3) CCl_4 $(1:1)$ 3 11.1 - 14.2 -7.2 - 9.6 $(0.9$ - $1.2)^d$ 2c CCl_4 $(1:1)$ 3 11.1 - 14.2 -7.2 - 9.6 $(0.9$ - $1.2)^d$ 2c CCl_4 $(1:1)$ 3 11.1 - 14.2 -7.2			1	0.5	3.0	(0.5)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	14		1	12.4	±4 8	(1.0)
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	14					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			2	11.5 27.0	2.7 3.1	(1.0 2.4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	10	. ,	3	27_122	⊥2 1_7 8	(0.2_0.9)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	10	CITCI3				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1f	CHCI				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	11					
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	20	. ,				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2a					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			1	14.0	-2.0	(1.2)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	21.	. ,	1	15.0	. 9 7	(1.2)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	20					
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	•					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2 c	CCI_4	2			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$						` ,
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$						` /
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.1	CHCI				
2e $(1:1)$ $n-heptane 1$ $(2:1)$ $(2:1)$ $n-heptane 2$ $(2:1)$ $n-heptane 3$ $(2:1)$ $(2:1)$ (3.8)	20					
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			1	11.5	-1.1	(1.0)
n-heptane 1 7.5 -5.1 (1.0) (2:1) 2c ^f Me ₂ CO- the entire 45.2 -1.3 (3.8)	•	. ,	2	22 12 1	.22.55	(0.2.1.1)
(2:1) $2c^f$ Me ₂ CO- the entire 45.2 -1.3 (3.8)	2e					
$2c^f$ Me ₂ CO- the entire 45.2 -1.3 (3.8)			1	1.5	-5.1	(1.0)
	2cf		the entire	45.2	_1 3	(3.8)
" " procipitute					1.5	(5.0)
(1:5)			r-serprate			

<code>^aOptical</code> rotation was measured on a Polamat A polarimeter. b In MeOH. c In Me₂CO. d Optical rotation remained unchanged after 1 week at 20 o C. e In EtOH. f 2c (100 mg) was powdered, treated under a vacuum (1 Torr, 2 h) in order to remove the entrained CCl₄, and then crystallised from a mixture of the solvents with the addition of deficiency of CCl₄ (the ratio 2c:CCl₄ = 4:1).

sulfonylaminophenols.⁹ Similar 4-arenesulfonyloximinocyclohex-2-en-1-ones such as **3** have been obtained by the chlorination of corresponding *O*-arenesulfonyl-*p*-quinone oximes.^{10–12} We optimised the above methodology and thus rised the yields by 11–25% up to 75–86% (*cf.* ref. 12), improved the purity of **1b,c,f**, **2b**, **3a** (the analytically pure products were obtained after single crystallizations) and synthesised **1a,c,d**, **2a,d** and **3b** for the first time. All the products were characterised by spectroscopic data[†] and elemental analysis; the structures of **1e**, **2c** and **3a,b** were also confirmed by X-ray diffraction analysis (the

data for 1e and 3a,b will be published later). Compounds 1 and 2 both in solution and in crystals exist solely in the form of E-isomers relative to the double cyclohexene bond. For compound 3 in solution Z- and E-isomers are observed, whereas only the E-isomer is detected in a crystal (cf. refs. 10–12). All the above compounds are stable and give well-formed, rather large-sized, transparent crystals. By testing the optical activity of individual crystals, (+)- and (-)-enantiomers of compounds 1 and 2 were isolated. This results in the identification of 11 new conglomerates (Table 1). Consistently, X-ray diffraction analysis performed on 1e and 2c demonstrated that single crystals contain homochiral molecules (space groups P1) (Figure 1).‡ By contrast, structurally related O-benzenesulfonyloximes 3a,b form centrosymmetric crystals and thus do not lead to any spontaneous resolution.

† Characteristics and spectroscopic data. ¹H and ¹³C NMR spectra were measured at 300 and 75 MHz, respectively, in CDCl₃

1a: yield 72%, mp 124–125 °C (AcOH). 1 H NMR, δ : 2.25 (s, 3H, 3-Me), 6.64 (s, 1H, 5-H), 7.62, 7.72 and 8.05 (m, 5H, Ph). IR, ν /cm⁻¹: 1725 (C=O), 1610, 1584 (C=N, C=C), 1338, 1170 (SO₂).

1b: 9 yield 78%, mp 137–138 °C (AcOH). ¹H NMR, δ : 6.69 (s, 1H, 5-H), 7.63, 7.74 and 8.07 (m, 5H, Ph). ^{13}C NMR { ^{1}H }, δ : 58.2 [C(5)], 81.2 [C(6)], 127.8, 129.4, 134.5 and 138.2 (Ph), 138.6, 143.8 [C(2), C(3)], 160.3 [C(4)], 173.4 [C(1)].

1c: yield 86%, mp 155–156 °C (AcOH). 1 H NMR, δ: 2.19 (s, 3H, 6-Me), 2.28 (s, 3H, 3-Me), 6.48 (s, 1H, 5-H), 7.60, 7.70 and 8.05 (m, 5H, Ph). 13 C NMR 1 H 1 , δ : 20.12 (3-Me), 25.48 (6-Me), 46.59 [C(5)], 55.58 [C(6)], 127.55, 129.18, 133.91 and 139.32 (Ph), 133.95 [C(2)], 148.22 [C(3)], 167.10 [C(4)], 181.50 [C(1)]. IR, ν /cm⁻¹: 1710 (C=O), 1600 (C=N, C=C), 1320, 1169 (SO₂).

1d: yield 62%, mp 142–143 °C (AcOH). ¹H NMR, δ: 2.24 (s, 3H, 3-Me), 2.50 (s, 3H, Me), 6.66 (s, 1H, 5-H), 7.40 and 7.92 (dd, 4H, C₆H₄, ^{3}J 8.4 Hz). ^{13}C NMR { ^{1}H }, δ : 17.02 (3-Me), 21.71 (Me), 58.64 [C(5)], 81.63 [C(6)], 127.82, 129.93, 145.52, and 146.46 (C₆H₄), 135.83 [C(2)], 145.52 [C(3)], 164.67 [C(4)], 174.83 [C(1)]. IR, v/cm⁻¹: 1723 (C=O), 1595, 1570 (C=N, C=C), 1339, 1161 (SO₂)

1e: 9 yield 77%, mp 141–142 °C (AcOH). ¹H NMR, δ: 2.49 (s, 3H, Me), 6.71 (s, 1H, 5-H), 7.40 and 7.97 (dd, 4H, C_6H_4 , 3J 8.3 Hz). ${}^{13}C$ NMR $\{^{1}H\}$, δ : 21.77 (Me), 52.8 [C(5)], 81.40 [C(6)], 128.03, 130.05, 135.46, and 145.89 (C₆H₄), 138.70 and 143.96 [C(2), C(3)], 160.02 [C(4)], 173.52 [C(1)]. IR, v/cm⁻¹: 1724 (C=O), 1610, 1555 (C=C, C=N), 1346, 1168 (SO₂).

1f: 9 yield 75%, mp 141–142 °C (AcOH). ¹H NMR, δ: 6.63 (s, 1H, 5-H), 7.60 and 8.00 (dd, C_6H_4 , 3J 8.7 Hz). IR, ν /cm⁻¹: 1723 (C=O), 1600, 1553 (C=C, C=N), 1350, 1170 (SO₂).

2a: yield 81%, mp 130–131 °C (CCl₄). 1 H NMR, δ : 4.76 (d, 1H, 2-H, ^{3}J 3.9 Hz), 6.55 (d, 1H, 3-H, ^{3}J 3.9 Hz), 7.61, 7.68 and 8.13 (m, 5H, Ph), 7.61 and 8.12 (m, 4H, 5,6,7,8-H).

2b: 9 yield 82%, mp 141–142 °C (AcOH). ¹H NMR, δ: 6.83 (s, 1H, 3-H), 7.61, 7.70 and 8.10 (m, 5H, Ph), 7.78 and 8.14 (m, 4H, 5,6,7,8-H). IR, ν /cm⁻¹: 1719 (C=O), 1612, 1583 (C=C, C=N), 1330, 1161 (SO₂)

2c: 9 yield 84%, mp 136–137 °C (CCl₄). ¹H NMR, δ: 2.48 (s, 3H, Me), 4.75 (d, 1H, 2-H, ³J 3.6 Hz), 6.57 (d, 1H, 3-H, ³J 3.6 Hz), 7.40 and 7.99 (dd, 4H, $\rm C_6H_4, {}^3\mathit{J}$ 8.1 Hz), 7.75 and 8.13 (mm, 4H, 5,6,7,8-H). IR, ν/cm^{-1} : 1705 (C=O), 1612, 1587 (C=N, C=C), 1330, 1165 (SO₂).

2d: yield 86%, mp 138–139 °C (CCl₄). ¹H NMR, δ: 4.77 (d, 1H, 2-H, ^{3}J 3.3 Hz), 6.51 (d, 1H, 3-H, ^{3}J 3.6 Hz), 7.58 and 8.04 (m, 4H, $C_{6}H_{4}$, ³J 8.7 Hz), 7.77 and 8.12 (m, 4H, 5,6,7,8-H).

2e: 9 yield 80%, mp 167–168 °C (AcOH). ¹H NMR, δ : 6.78 (s, 1H, 3-H), 7.60 and 8.05 (dd, 4H, C_6H_4 , 3J 8.7 Hz), 7.80 and 8.17 (m, 4H, 5,6,7,8-H). IR, v/cm⁻¹: 1725 (C=O), 1620, 1589 (C=C, C=N), 1343, 1170 (SO₂)

3a:12 yield 78%, mp 110 °C (AcOH); the ratio of isomers E/Z = 2.1. *E*-isomer: ¹H NMR, δ : 1.85 (s, 3H, 6-Me), 2.02 (d, 3H, 2-Me, ⁴*J* 1.5 Hz), 5.47 (d, 1H, 3-H, ⁴*J* 1.5 Hz), 6.76 (s, 1H, 5-H), 7.58, 7.71 and 8.01 (m, 5H, Ph). ¹³C NMR {¹H}, δ: 16.74 (6-Me), 22.33 (2-Me), 53.18 [C(5)], 63.35 [C(6)], 122.67, 129.05, 129.25 and 130.03 (Ph), 134.56 and 140.54 [C(2), C(3)], 157.24 [C(4)], 188.80 [C(1)]. Z-isomer: 1.86 (s, 3H, 6-Me), $2.07~(\mathrm{d},\,3\,\mathrm{H},\,2\text{-Me},\,{}^4\!J\,1.5~\mathrm{Hz}),\,4.89~(\mathrm{d},\,1\mathrm{H},\,3\text{-H},\,{}^4\!J\,1.5~\mathrm{Hz}),\,7.27~(\mathrm{s},\,1\mathrm{H},\,1)$ 5-H), 7.58, 7.71 and 8.01 (m, 5H, Ph). 13 C NMR $\{^{1}$ H $\}$, δ : 16.98 (6-Me), 22.75 (2-Me), 61.71 [C(5)], 65.10 [C(6)], 122.67, 129.00, 129.24 and 130.03 (Ph), 134.44 and 141.74 [C(2), C(3)], 155.75 [C(4)], 188.60 [C(1)]. IR, ν /cm⁻¹: 1703 (C=O), 1630, 1590 (C=N, C=C), 1394, 1209 (SO₂)

3b: yield 73%, mp 143 °C (AcOH), the ratio of isomers in CDCl₃ E/Z = 4.0. E-isomer: ¹H NMR, δ : 1.90 (s, 3H, 6-Me), 5.49 (s, 1H, 3-H), 7.15 (s, 1H, 5-H), 7.59, 7.72 and 8.00 (m, 5H, Ph). Z-isomer: 1.90 (s, 3H, 6-Me), 5.48 (s, 1H, 3-H), 7.14 (s, 1H, 5-H), 7.59, 7.72 and 8.00 (m, 5H, Ph).

 $\mathbf{d} \ X = R' = Me, R'' = Y = Cl$ $\mathbf{d} X = Cl, R = H$ e X = Me, R' = R'' = Y = Cle X = Cl, R = Clf X = Cl, R' = R'' = Y = Cl

Compound 2c crystallises as a CCl₄ solvate with the 2:1 stoichiometry. This achiral solvent molecule could favour the crystallization in non-centrosymmetric space group and thus acts as a conglomerator. 13 Therefore, a predetermined optical enrichment of compound 2c can be performed by crystallization in the presence of a half-mole quantity of CCl₄. In this case, the entire precipitate possessed optical activity whereas upon crystallization from CCl₄ only individual crystals were optically active, but the entire precipitate was a racemic conglomerate.

This work was supported by the Russian Foundation for Basic Research (grant no. 97-03-33021) and INTAS (grant no. 157).

References

- 1 J. Jacques, A. Collet and S. H. Wilen, Enantiomers, Racemates, and Resolutions, Krieger Publ. Co, Malabar, Florida, 1994.
- (a) A. Collet, Enantiomer, 1999, 4, 157; (b) A. Collet, in Comprehensive Supramolecular Chemistry, ed. D. N. Reinhoudt, Pergamon Press, Oxford, 1996, vol. 10, ch. 5, p. 113; (c) G. Coquerel, M. N. Petit and F. Robert, Acta Crystallogr., 1993, C49, 824.
- 3 A. B. Zolotoi, Yu. I. El'natanov, I. I. Chervin, S. V. Konovalikhin, O. A. Dyachenko, L. O. Atovmyan and R. G. Kostyanovsky, Khim. Geterotsikl. Soedin., 1988, 909 [Chem. Heterocycl. Compd. (Engl. Transl.), 1988,
- 4 R. G. Kostyanovsky, Yu. I. El'natanov, I. I. Chervin, S. V. Konovalikhin, A. B. Zolotoi and L. O. Atovmyan, Izv. Akad. Nauk, Ser. Khim., 1996, 1796 (Russ. Chem. Bull., 1996, 45, 1707).
- 5 R. G. Kostyanovsky, V. F. Rudchenko and G. V. Shustov, Izv. Akad. Nauk SSSR, Ser. Khim., 1977, 1687 (Bull. Acad. Sci. USSR, Div. Chem. Sci., 1977, 26, 1560).
- V. F. Rudchenko, O. A. Dyachenko, A. B. Zolotoi, L. O. Atovmyan, I. I. Chervin and R. G. Kostyanovsky, Tetrahedron, 1982, 38, 961
- 7 R. G. Kostyanovsky, K. A. Lyssenko, G. K. Kadorkina, O. V. Lebedev, A. N. Kravchenko, I. I. Chervin and V. R. Kostyanovsky, Mendeleev Commun., 1998, 231.
- R. G. Kostyanovsky, K. A. Lyssenko, Yu. I. El'natanov, O. N. Krutius, I. A. Bronzova, Yu. A. Strelenko and V. R. Kostyanovsky, Mendeleev Commun., 1999, 106.

‡ Crystallographic data for **2c** at 20 °C: (C₁₇H₁₃NO₃SCl₂)₂·CCl₄, triclinic, crystal size $0.36 \times 0.39 \times 0.48$ mm, space group P1, a = 12.959(5) Å, b = 12.959(5)= 13.271(6) Å, c = 13.951(7) Å, $\alpha = 63.03(4)^{\circ}$, $\beta = 77.56(4)^{\circ}$, $\gamma = 71.69(5)^{\circ}$, $V = 2023 \text{ Å}^3$, Z = 2, $d_{\text{calc}} = 1.508 \text{ g cm}^{-3}$, $\mu(\text{MoK}\alpha) = 0.706 \text{ mm}^{-1}$, $F(000) = 0.706 \text{ mm}^{-1}$ = 932. The intensities of 7581 reflections were measured on an Enraf-Nonius CAD-4 diffractometer at 20 °C (λ MoK α radiation, θ /2 θ scan, $12^{\circ} < \theta < 23^{\circ}$), and 6075 independent reflections were used in further calculations and refinement. The structure was solved by a direct method and refined using the full-matrix least-squares method against F^2 in the anisotropic–isotropic approximation. The refinement is converged to wR_2 = = 0.2148 and GOF = 0.988 for all independent reflections $[R_1 = 0.0789]$ is calculated against F for 6044 observed reflections with $I > 2\sigma(I)$]. The number of refined parameters is 514. All the calculations were performed using the SHELXS and SHELXL 93 programs. Atomic coordinates, bond lengths, bond angles and thermal parameters have been deposited at the Cambridge Crystallographic Data Centre (CCDC). For details, see 'Notice to Authors', Mendeleev Commun., 2000, Issue 1. Any request to the CCDC for data should quote the full literature citation and the reference number 1135/60.

- 9 A. P. Avdeenko and S. A. Zhukova, Zh. Org. Khim., 1999, 35, 412 (Russ. J. Org. Chem., 1999, **35**, 388).
- 10 (a) A. P. Avdeenko, N. M. Glinanaya and V. V. Pirozhenko, Zh. Org. Khim., 1993, **29**, 1402 (Russ. J. Org. Chem., 1993, **29**, 1164); (b) A. P. Avdeenko, N. M. Glinanaya and V. V. Pirozhenko, Zh. Org. Khim., 1995, **31**, 1523 (*Russ. J. Org. Chem.*, 1995, **31**, 1380).

 11 A. P. Avdeenko and N. M. Glinanaya, *Zh. Org. Khim.*, 1995, **31**, 1679
- (Russ. J. Org. Chem., 1995, 31, 1507).
- 12 A. P. Avdeenko, S. A. Zhukova and N. M. Glinanaya, Zh. Org. Khim., 1999, 35, 586 (Russ. J. Org. Chem., 1999, 35, 560).
- 13 R. G. Kostyanovsky, Proceedings of the Interdisciplinary Symposium on Biological Homochirality, Serramazzoni (Modena), Italy, 1998, OP 20,

Received: 22nd September 1999; Com. 99/1536